SISTEM PERTIDAKSAMAAN KUADRAT-KUADRAT
PUTRI AMELIA





X IPS 3
23
Sistem pertidaksamaan kuadrat dua variabel terdiri dari dua pertidaksamaan kuadrat.
contoh soal:
1. Gambarlah kedua pertidaksamaan kuadrat berikut ini dalam satu sistem koordinat Cartesius, kemudian tentukan daerah penyelesaiannya
y > x2 – 9
y ≤ –x2 + 6x – 8
jawab:
a. Gambar daerah penyelesaian pertidaksamaan y > x2 – 9
(1) Tititk potong dengan sumbu-X syarat y = 0
x2 – 9 = 0
(x + 3)(x – 3) = 0
x = –3 dan x = 3
Titik potongnya (–3, 0) dan (3, 0)
(2) Tititk potong dengan sumbu-Y syarat x = 0
y = x2 – 9
y = (0)2 – 9
y = –9
Titik potongnya (0, –9)
(3) Menentukan titik minimum fungsi y = x2 – 9
(4) Gambar daerah penyelesaiannya
(Daerah yang diarsir adalah daerah penyelesaian)
b. Gambar daerah penyelesaian pertidaksamaan y ≤ –x2 + 6x – 8
(1) Tititk potong dengan sumbu-X syarat y = 0
–x2 + 6x – 8 = 0
x2 – 6x + 8 = 0
(x – 4)(x – 2) = 0
x = 4 dan x = 2
Titik potongnya (4, 0) dan (2, 0)
(2) Tititk potong dengan sumbu-Y syarat x = 0
y = –x2 + 6x – 8
y = –(0)2 + 6(0) – 8
y = –8
Titik potongnya (0, –8)
(3) Menentukan titik maksimum fungsi y = –x2 + 6x – 8
(4) Gambar daerah penyelesaiannya
(Daerah yang diarsir adalah daerah penyelesaian)
Daerah penyelesaian kedua pertidaksamaan itu adalah irisan dua daerah penyelesaian masing-masing pertidaksamaannya, yakni:
2. . Tentukan himpunan penyelesaian dari sistem persamaan
2x + 3y ≥ 12
y ≤ -x² + 5x + 6
penyelesaian:
2x + 3y ≥ 12
(0,4) (6,0)
-x² + 5x + 6 ≥ y
(-x -1) (x-6)
X= 1. X=6
HP= {x| 0 ≤ x ≤ 6}