SPLTV

Nama : Putri Amelia
Kelas  : X IPS 3
Absen : 23

CONTOH SOAL DAN PENYELESAIAN
1. Ibu Yanti membeli 5 kg telur, 2 kg daging, dan 1 kg udang dengan harga Rp 305.000,00. Ibu Eka membeli 3 kg telur dan 1 kg daging dengan harga Rp 131.000,00. Ibu Putu membeli 3 kg daging dan 2 kg udang dengan harga Rp 360.000,00. Jika Ibu Aniza membeli 3 kg telur, 1 kg daging, dan 2 kg udang, berapah harga yang harus ia bayar?

Penyelesaian:
Misal x = harga telur, y = harga daging, dan z = harga udang.
•Jumlah harga belanjaan ibu Yanti Rp 305.000 sehingga diperoleh persamaan:
5x + 2y + z = 305000
•Jumlah harga belanjaan ibu Eka Rp 131.000 sehingga diperoleh persamaan:
3x + y = 131000
•Jumlah harga belanjaan ibu Putu Rp 360.000 sehingga diperoleh persamaan:
3y + 2z = 360000
Jumlah harga yang harus dibayar Ibu Aniza dapat ditulis dengan persamaan = 3x + y + 2z

Diperoleh SPLTV yakni:
5x + 2y + z = 305000 . . . . pers (1)
3x + y = 131000 . . . . pers (2)
3y + 2z = 360000 . . . . pers (3)

Adapun metode yang akan dipilih dalam menyelesaikan SPLTV yakni metode subtitusi.
Langkah I
Ubah persamaan 2 yakni:
3x + y = 131000
y = 131000 – 3x . . . . pers (4)
Langkah II
Substitusi persamaan 4 ke persamaan 1, maka:
5x + 2y + z = 305000
5x + 2(131000 – 3x) + z = 305000
5x + 262000 – 6x + z = 305000
– x + z = 43000
z = 43000 + x . . . . persamaan 5
Langkah III
Substitusi persamaan 5 ke persamaan 3, maka:
3y + 2z = 360000
3y + 2(43000 + x) = 360000
3y + 86000 + 2x = 360000
2x + 3y = 274000 . . . . pers (6)
Langkah IV
Substitusi persamaan 4 ke persamaan 6, maka:
2x + 3y = 274000
2x + 3(131000 – 3x) = 274000
2x + 393000 – 9x = 274000
– 7x = – 119000
x = – 119000/–7
x = 17000
Langkah V
Substitusi nilai x ke persamaan 4 dan ke persamaan 5, maka:
y = 131000 – 3x
y = 131000 – 3(17000)
y = 80000
z = 43000 + x
z = 43000 + 17000
z = 60000
Langkah VI
Jumlah harga yang harus dibayar ibu Aniza yakni:
Ibu Dina = 3x + y + 2z
Ibu Dina = 3(17000) + 80000 + 2(60000)
Ibu Dina = 51000 + 80000 + 120000
Ibu Dina = 251000
Jadi, harga yang harus Ibu Aniza bayar adalah sebesar Rp 251.000,00

2. Pada hari Minggu Wayan, Candra, Agus dan Akbar membeli perlengkapan sekolah di toko buku “Subur”. Wayan membeli 4 buku, 2 bolpoin, dan 3 pensil dengan harga Rp26.000,00. Candra membeli 3 buku, 3 bolpoin, dan 1 pensil dengan harga Rp21.500,00. Agus membeli 3 buku, dan 1 pensil dengan harga Rp12.500,00. Jika Akbar membeli 1 buku, 2 bolpoin dan 2 pensil, berapakah harga yang harus ia bayar?

Penyelesaian:
Misalkan a = buku, b = bolpoin, dan c = pensil
Persamaan matematis untuk:
Wayan => 4a + 2b + 3c = 26000
Candra => 3a + 3b + c = 21500
Agus => 3a + c = 12500
Akbar => a + 2b + 2c = ?

Diperoleh SPLTV yakni:
4a + 2b + 3c = 26000 . . . . pers (1)
3a + 3b + c = 21500 . . . . pers (2)
3a + c = 12500 . . . . pers (3)
Adapun metode yang dipilih dalam menyelesaikan SPLTV ini yakni dengan menggunakan metode eliminiasi.
Langkah I
Eliminasi variabel b pada persamaan 1 dan 2 yakni:
4a + 2b + 3c = 26000 x3
3a + 3b + c = 21500 x2

12a + 6b + 9c = 78000
6a + 6b + 2c = 43000
----------------------------- -
  6a + 0 + 7c = 35000
=> 6a + 7c = 35000 . . . pers (4)
Langkah II
Eliminiasi variabel c pada persamaan 3 dan 4, yakni:
3a + c = 12500 x7
6a + 7c = 35000 x1

21a + 7c = 87500
  6a + 7c = 35000
----------------------- -
15a = 52500
    a = 3500
Langkah III
Substitusi nilai a ke persamaan 4, maka:
6a + 7c = 35000
6(3500) + 7c = 35000
21000 + 7c = 35000
               7c = 14000
                 c = 2000
Langkah IV
Substitusi nilai a dan c ke persamaan 2, maka:
3a + 3b + c = 21500
3(3500) + 3b + 2000 = 21500
10500 + 3b + 2000 = 21500
12500 + 3b = 21500
               3b = 9000
                 b = 3000
Langkah V
Untuk menentukan harga yang harus Akbar bayar dapat dilakukan dengan memasukan nilai a, b dan c, yakni:
Harga = a + 2b + 2c
Harga = 3500 + 2(3000) + 2(2000)
Harga = 3500 + 6000 + 4000
Harga = 13500
Jadi harga yang harus Akbar bayar adalah sebesar Rp 13.500,00.

3. Diketahui sebuah bilangan tiga angka. Jumlah angka-angka tersebut 11. Dua kali angka pertama ditambah angka kedua sama dengan angka ketiga. Angka pertama ditambah angka kedua dikurangi angka ketiga sama dengan – 1. Tentukan ketiga bilangan tersebut.

Penyelesaian:
Misalkan: x = bilangan pertama, y = bilangan kedua, z = bilangan ketiga
Persamaan matematis:
a + b + c = 11
2a + b = c => 2a + b – c = 0
a + b – c = – 1

Diperoleh SPLTV yakni:
a + b + c = 11 . . . . pers (1)
2a + b – c = 0 . . . . pers (2)
a + b – c = – 1 . . . . pers (3)
Langkah I
Eliminasi c dengan menggunakan persamaan 1 dan 2 maka:
a + b + c = 11
2a + b – c = 0
----------------- +
3a + 2b = 11 . . . . . pers (4)
Langkah II
Eliminasi b dan c dengan menggunakan persamaan 2 dan 3, maka:
2a + b – c = 0
a + b – c = – 1
------------------ -
a = 1
Langkah III
Subtitusi nilai a ke persamaan 4, maka:
3a + 2b = 11
3(1) + 2b = 11
3 + 2b = 11
2b = 8
b = 4
Langkah IV
Subtitusi nilai a dan b ke persamaan 1, 2 atau 3, maka:
a + b + c = 11
1 + 4 + c = 11
5 + c = 11
c = 6
Jadi ketiga bilangan tersebut secara berurutan adalah 1, 4 dan 6.

DAFTAR PUSTAKA
https://mafia.mafiaol.com/2020/10/contoh-soal-cerita-persamaan-linear-tiga-variabel-dan-penyelesaiannya.html?m=1

Postingan populer dari blog ini

Integral Fungsi Aljabar

Luas Segi-n Beraturan, Jari-jari lingkaran

Sistem Persamaan dan Pertidaksamaan Kuadrat- Linear